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The unsteady nonlinear potential flow induced by a submerged line source or sink is 
studied by a vortex sheet method, both to trace the free surface evolution and to 
explore the possible existence of steady-state solutions. Only steady-state flows have 
been considered by other investigators, and these flows have been insensitive to 
whether they are generated by a source or sink, except with respect to the flow direction 
along the streamlines. The time-dependent solution permits an assessment of the 
stability of previously found steady solutions, and also reveals differences between 
source and sink flows : for the infinite-depth case, steady stagnation-point-type 
solutions are found for source flows, even above the critical value of source/sink 
strength reported by other investigators; for the finite-depth case, steady stagnation- 
point-type solutions are found both for source flows and sink flows, above the critical 
value reported by other investigators; finally, it is shown that streamline patterns of 
steady stagnation-point flows are identical for source and sink flows only in the limiting 
case of infinite depth. 

1. Introduction 
The nonlinear potential flow induced by a line source or sink below a free surface has 

attracted interest not only as a fundamental problem but also in connection with the 
selective withdrawal of fluid from a reservoir, a cooling pond for a power station, or 
a solar pond for energy conversion. The steady-state case has been studied by 
perturbation and function-theoretic methods (Hocking 1985, 1991 ; Forbes & Hocking 
1993; Hocking & Forbes 1991, 1992; Vanden-Broeck, Schwartz & Tuck 1978; 
Vanden-Broeck & Keller 1987; Tuck & Vanden-Broeck 1984), and striking results 
have been obtained. For the case of infinite-depth fluid, Vanden-Broeck et al. (1978) 
showed that the series expansion of the free surface elevation in the Froude number F 
(non-dimensional source/sink strength) proceeds in even powers of F, so that the free 
surface shape and streamlines are insensitive to whether the singularity is a source or 
sink (although the directions of flow along the streamlines are opposite for the two 
cases). The solution obtained by them has been called a stagnation-point flow because 
it is characterized by a stagnation point at the free surface, directly above the 
source/sink. Motivated by the way the free surface shape evolves as F is increased, and 
by studies of stratified fluids, Tuck & Vanden-Broeck (1984) sought cusp-like 
solutions, where the free surface shape is a downward facing cusp with its tip above the 
source/sink. They found that such a solution could be obtained only if F2 were 
included as one of the unknowns, and a cusp solution was indeed found at a unique 
value of F 2 .  Numerous stagnation-point solutions (Hocking & Forbes 1991, 1992; 
Peregrine 1972; Vanden-Broeck & Keller 1987; Vanden Broeck et al. 1978) and cusp 
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solutions (Craya 1949; Hocking 1985, 1991; Tuck & Vanden-Broeck 1984; Vanden- 
Broeck & Keller 1987) can now be found in the literature. 

For the infinite-depth case, the stagnation-point solutions are reported only for 0 < 
IF1 < l&J = 1.42. Above that critical value, steady-state solutions have not been found, 
except for a cusp solution at the unique supercritical value IF1 = 3.55. 

For the finite-depth case, two critical values are reported, rather than one. For 0 d 
IF1 < ]&I stagnation-point solutions are reported, for no steady 
solutions are obtained, and cusp flows are found for all IF] above crl and era are 
functions of the ratio of the water depth to the source/sink depth. They are 
approximately 0.23 and 1.0, respectively, when the depth ratio is unity (Hocking & 
Forbes 1992). 

To shed additional light on these flow regimes for the infinite-depth case Sozer (1994) 
and Sozer & Greenberg (1993) studied the unsteady flow and approach to steady state 
by applying a vortex sheet approach that was developed by Zaroodny & Greenberg 
(1973) and developed independently by Baker, Meiron & Orszag (1982). For 
representative subcritical Froude numbers (i.e. below 1.42), a stable approach to the 
stagnation-point solution was found. For the source case, stable stagnation-point 
solutions were found, for the first time, for Froude numbers greater than 1.42 as well. 
In the present paper we extend those results and also consider the case of finite depth. 

< IF1 < 

2. Vortex sheet approach 
It is known from classical potential theory that the potential flow in the air (i.e. the 

fluid above the free surface) can be generated by a vortex sheet along the free surface, 
and that the potential flow in the water (i.e. the fluid between the free surface and 
bottom) can be generated by a different vortex sheet along the free surface together 
with the source/sink and an image system below the bottom. However, it is simpler to 
generate both flows by the same free surface vortex sheet, source/sink, and their image 
system since such a system automatically satisfies the kinematic free surface boundary 
condition that the normal velocity is continuous across the free surface. This 
arrangement is shown in figure 1, where the x-axis coincides with the undisturbed water 
level, Q is the source/sink strength (positive for source, negative for sink), Y(x, t )  is the 
free surface elevation, G(x, t )  is the free surface vortex density (circulation per unit x- 
length), and t is the time. 

As derived in Sozer (1994) and Sozer & Greenberg (1993), the evolution equations 
governing Y and G are 

G, = - ( U G ) , + $ K [ C ~ G ( C S G Y , , - G , ) - ~ ( U ~ +  UU,)-4(K+ UV,+ 1) Y,] 
& = v- ur,, (2.1) 

+L[ Y,x ] (2.2) 
p a + p  (1 + Y y 2  ,' 

where subscripts denote partial derivatives; K = @" -pa)/@" +pa) with pa and p" the 
densities of air and water, respectively; 7 is the surface tension; S = sin(tan-l r,) = 
Y,/(l+ Y;)l/' and C = cos(tan-' Y,) = 1/(1+ Y2)1/2; and U, V are the averaged x,y 
velocities at the free surface, U = $(ua + uw) and V = $(ua + u"). Equation (2.1) expresses 
the kinematic condition that particles once on the free surface remain on the free 
surface, and equation (2.2) expresses the dynamic condition that the pressure jump 
across the free surface is due to the interaction of surface tension and free surface 
curvature. In this study we take T = 0. Lengths, velocities, and time have been non- 



Free surface flow induced by a submerged line source or sink 227 

Air 
7 

t t  ,X - Water 

' Y(x,t)  

FIGURE 1. Vortex system geometry. 

dimensionalized with respect to d, (gd)1/2, and (d/g)1/2, respectively, where g is the 
acceleration due to gravity. Also, 

1 FH(t) 27c { x2 + [ 1 + Y(x, t)12 x 2  + [2a - 1 + Y(x, t)12 
X X 

U(X, t )  = - + 
Y(6, - Y(x, t )  

+ 

2a + Y(6, t )  + Y(x, t )  

(2.3 a) 

FH(t){ 1 + Y(x, t )  2a- 1 + Y(x, t )  
V(X, t )  = - 

271. x2 + [ 1 + Y(x, t ) ] 2  + x2 + [2a - 1 + Y(x, t ) ] 2  

(2.3 b) 

where F = Q/(gd3)1/2 is the Froude number, H(t)  is a Heaviside step function, and 
a = D / d  is the depth ratio. 

It can be verified that (2.1k(2.3) are equivalent to the analogous equations in Baker 
et al. (1982) although Baker et al. use complex variable notation, doublets rather than 
vortices (one can transform from doublets to vortices by integration by parts), a 
Lagrangian scheme rather than Eulerian, and assumes periodicity in the x-direction. 
Note that if the air density is zero, as assumed in the other papers on this problem, then 
K = 1, whereas if the air density is accounted for then K is slightly less than 1. Thus, the 
vortex model allows for superposed fluids without complication. The only significant 
simplification of the system (2.1k(2.3) would be for the case of internal waves, where 
K = 0. 

3. Numerical solution 
Equations (2.1)-(2.3) comprise a set of nonlinear, Cauchy-singular integro- 

differential equations for Y(x,t) and G(x,t), to which we add the initial conditions 
Y(x,O) = G(x,O) = 0. The integrals are of Cauchy principal value type, but are 
desingularized by 'folding' the 6-axis about the computation point x,  to allow the 
positive and negative singularities to cancel. To handle the infinite extent of the inte- 
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gration domain, the asymptotic approximations G(x, t )  = A , / x  + A 2 / x 3  and Y(x, t )  = 
A 3 / x 2  + A,/x4 are used in the ‘tails’ from the ends of the computational domain to 
infinity, where the constants A,-A, are computed at each time step by means of a least- 
squares fit over the last several computational points. These forms are suggested by the 
asymptotic behaviour of the perturbation solutions given below ia 94.1. Fourth-order 
Simpson’s integration is used in the finite computational domain, and the tail integrals 
are calculated analytically. Within the computational domain, a uniform spacing of 
Ax = 0.1 is used between nodal points, that spacing being sufficiently small to resolve 
the Y and G forms that result. (Reducing Ax to 0.05 and 0.025 results in plots of Y 
and G that are indistinguishable from those corresponding to Ax = 0.1 .) 

Fourth-order Runge-Kutta integration is used for the time integration, but that 
calculation is complicated by the U, and 5 terms in (2.2) since they contain G, within 
the &integrals. Following Zaroodny & Greenberg (1973), we use an iterative procedure 
to handle those terms, with the initial estimate of G, (in U, and 5) based upon an 
extrapolation from previous time steps. Essentially the same procedure was adopted in 
Baker et al. (1982) and those authors proved the convergence of the iteration. Their 
proof is unaffected by the presence of the source/sink and its image. 

We approximate H(t) in (2.3) as sin(500zt) from t = 0 to 0.001, and unity for t > 
0.001. Ten equal time steps are used from t = 0 to 0.001, after which we computed at 
t = 0.1, 0.2, and so on. 

A numerical instability arises in all the variables Y,  G, U and V, and is unrelated to 
the handling of the ‘tail’ regions since its onset is independent of the size of the 
computational domain. This instability was also observed by Baker et al. (1982), who 
used periodic boundary conditions in the x-direction, and Telste (1987), who used 
‘sponge layers’ at the ends of the x-computational domain. To suppress the instability, 
linear filtering is used, as in Telste. Specifically, a five-point smoothing formula is 
applied at all nodal points except for two points at each end of the computational 
domain. These four points are handled by extrapolating from the adjacent points. The 
five-point smoothing formula (Longuet-Higgins & Cokelet 1976; Shapiro 1975) is 

(3.1) wi new - - =( 1 - w;!; + 4 w;!; + 10 w ; l d  + 4 w;:: - w;:;), 
where 
(1987), filtering is applied after each time step. 

represents Y,  G, U or V at a fixed t and at the ith nodal point. As in Telste 

4. Infinite-depth limit 
4.1. Perturbation solution 

For comparison with our numerical results, we also consider a perturbation solution in 
the Froude number F. Of special interest is the steady state, for which we seek Y(x) = 
FY,(x) + F2 Y,(x) + . . . , and similarly for G(x), U(x), and V(x). This case was treated 
in (Sozer 1994), and it was found that 

+ O F 5 ) ,  
1 x  3(K + 1) X ( X ,  - 6x2 + 1) G(x) = F-- -F3-  
7cx2+1 1 6 7 ~ ~ ~  (x2  + l), (4.1 a) 

+ O(F6). (4.1 b) 
’ 3 ( ~  + 1)’ x2(x4 - 6x2 + 1) 

3 2 7 ~ ~ ~ ’  ( x 2  + 1)5 

For K = 1 this Y(x) is in agreement with results given in Vanden-Broeck et al. (1978), 
wherein the air density was taken to be zero. (G(x) was not found in Vanden-Broeck 
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et al. since those authors did not use a vortex sheet model.) Equations (4.1a, b)  
correspond to the stagnation point solution and, as noted above, the free surface shape 
is insensitive to the sign of Q (and hence F )  since the expansion proceeds in even powers 
of F. 

For the unsteady case we seek 

Y(x, t )  = FY,(x, t )  + F2 Y,(x, t )  + . . . (4.2) 

and similarly for G(x, t ) ,  U(x, t),  and V(x, t). As shown in Sozer (1994) and Sozer & 
Greenberg (1993) 

e-w cos (xw)  sin (~(Kw)'/') 
y,(x, t )  = - w1/2 dw, (4.3 a) 

G,(x, t )  = n:x2+1 ' ' +K~~eP's in(xw)cos( t t (Kw)112)dw,  n: (4.3b) 

which do tend to the correct steady-state values 0 and x/7c(x2+ 1) respectively, as 
t + 00. In particular, for x = 0 and K = 1 

is a tabulated Dawson's integral (Abramowitz & Stegun 1964, p. 298). Y,(O, t )  increases 
from zero to a maximum of 0.34443945 at t = 1.8482777, then decreases mono- 
tonically to zero as t + co. In fact, Y,(x, t )  exhibits a rather flat interval centred at 
x = 0, that broadens with time, as seen in figure 2. (We choose K = 1, in our calculations, 
for comparison with other papers that take the air density to be zero.) 

The computational domain is chosen to be -200 < x < 200. In view of the algebraic 
decay forms used for G and Y in the 'tails', it seems prudent to terminate the 
calculation before the inflection point to the right of the outermost crest reaches the 
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FIGURE 3. Y(x,  t )  induced by F = f0.3. 

end of the computational domain. With that limit in mind, calculations are carried as 
far as t = 30 for this choice of computational domain. 

4.2. Numerical results 
As noted in the introduction, stagnation point solutions have been obtained in the 
literature only for IF1 below some critical value, namely, IF1 < z 1.42. As a first 
case, consider the subcritical values F = f0.3. The computed free surface elevation 
Y(x, t )  is shown in figures 3 and 4 for representative times until t = 30. We see that the 
free surface does indeed approach the steady-state stagnation point solution (more 
specifically, the two-term perturbation solution (4.1 b)). The approach to steady state, 
displayed in figure 4, is even more compelling if we notice that the difference between 
the t = 30 free surface shapes and the two-term perturbation solution are essentially 
constants over 0 < x 5 5, and that difference is due primarily to the FY,(x, t )  term in 
the unsteady perturbation solution (4.2), which is quite flat at t = 30 over 0 < x 5 5 
(figure 2). (For instance, A = 0.006273 and B = -0.006226 whereas FY,(O, 30) = 
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FIGURE 5. Y(x, t )  evolution, for F = +2.  

10.3  Y , ( O ,  30) = +0.006381.) Since the Y,(x, t )  ‘plateau’ tends monotonically to zero 
(figure 2), we can infer that the dashed curves in figure 4 will continue to approach the 
two-term steady-state perturbation solution as t increases. 

An indirect assessment of the accuracy of the numerical results was carried out as 
follows. The program was run, up to t = 10, for the six cases F = kO.1, f0.2, 10.3. 
Equation (4.2) was written out for each of these cases, each time with a known (i.e. 
computed) function Y(x, t )  on the left-hand side. From these six equations, q ( x ,  t )  was 
found, by algebra, to within an error of O(F6). Since Y, (x , t )  is known exactly (ie. 
analytically), this procedure permitted an indirect assessment of the accuracy. The 
maximum percent error, 

calculated Y,(x, t )  - analytical Y,(x, t )  
max . [analytical Y,(x, t)] 

100 

over the rectangle 1x1 < 10, t < 10 was found to be 0.379%. This value compares 
unfavourably with the corresponding value 0.194 YO in Sozer & Greenberg (1993), but 
two points should be made. First, part of the error is due to the introduction of filtering 
here, filtering that is needed for stability. Secondly, a plot of the percent error, as a 
function of x for t = 2,4,6,8, 10, shows that the error is of a ‘wavelet’ form that moves 
outward with (but more slowly than) the overall wave system. Thus, it appears that the 
computed stagnation-point-type solutions are somewhat more accurate since they 
remain focused near the origin. 

Turning to the supercritical case, consider a source flow for F = f 2 .  Numerical 
results are shown in figure 5 ,  together with the one- and two-term perturbation 
solutions (denoted by psl and ps2, respectively), and they suggest that stable steady 
stagnation-point solutions exist beyond the critical value Er z 1.42 reported in Forbes 
& Hocking (1993) and Hocking & Forbes (1991). The numerical solution was less 
successful for sink flows, and even for large subcritical sink flows the calculations broke 
down so as to be inconclusive. 
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5. Finite-depth case 
5.1. Perturbation solution 

At steady state, we seek Y(x) = F K ( x )  + F2 Y,(x) + . . . , and similarly for G(x), U(x), and 
V(x). The evolution equations (2.1) and (2.2) give the coupled equations 

F':  O =  V,, (5.1 a)  

(5.16) 

(5.1 c) 

(5.1 d )  

respectively, and so on. The velocity terms in (5.1 a-f) are 

.] G'(0 d.5 (5.24 X 2 + 1  x2+(2a-Ij~+s_q,[-, (5-x)"44a 
2xtqx) = ~ 1 + 2a- 1 l +  &-x 

2(2a-1)2 I (2: 1 +x2+ (2a- 1)2 (XZ+ 1)2 [xx" +(2a- 1)2]2 
1 2 

2xv,(x)  = K ( x )  - 

(5.2d) 

and so on. Fourier transforming on x is convenient owing to the convolution nature 
of the integrals, and leads to the steady-state solutions 

1 cosh (xx/2a) sinh (xx/2a) 
2acosh2(7cx/2a)- sin2 [n(a- 1)/2a] 

G(x) = F- 

7 + C2} + O(F3), (5.3 b) 
{ K + 1 [ cosh (nx/2a) sinh (xx/2aj 

Y(x) = FCl-Fz - 
1 6 ~ ' ~  cosh2 (xx/2a) - sin2 [x(a - 1)/2a] 
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FIGURE 6. Y,(x, t )  evolution for K = 1 ; a = 1. 

wherep(w) = e-w+e-w(2a-1). The constants C 1 ( ~ ,  a) and C 2 ( ~ ,  a) cannot be found from 
(5.1). As seen from (5.3a, b), 

and 

sgn(x) sgn(x) K +  1 112 
G(x)+F--F2- 4a5/2 ( - zK ) +0(F3), 

Y(x)+FCl-F2[-+C2]+O(F3)) ,  K +  1 

2a 

1 6 a 2 ~  

(5.4a) 

(5.4b) 

as x+ co. We will refer to the latter as the 'setup/setdown' of the free surface at infinity 
for the source/sink flow in the presence of a finite depth flat bottom. 

For the unsteady case, we seek Y(x, t )  = FY,(x, t )  + F2 Y,(x, t )  + . . . , and similarly for 
G(x, t), U(x,  t),  and V(x, t). The non-dimensional source strength is FH(t). The coupled 
equations for the leading terms Y, and G, are 

F1: r,, = v,, 
F' : Glt = - 2K( ult + qz), 

or 

27tqt(x, t )  = H(t) 

- 27t r,Jx, t )  - 2a G1t(6") dt, (5.5b) 
-m (6 - x ) ~  + 4a2 

where 8(t) is the Dirac delta function. Fourier transforming on x and Laplace 
transforming on t lead to the solution 

[ 1 + q(w)] sin [t(~q(w))'/~] dw, (5.6b) 
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FIGURE 7. G,(x, t )  evolution for K = 1 ; a = 1 .  

where p(w) is defined above and q(w) = ~ ( 1  -e-""")/(l + K  e-2aw). As t - t  00, Y,(x, t )  -t 
[ (K+  1)/8a~]l/~.  Thus, C, = [ (K+  1)/8a!~]~/~ in (5.3b), but C, is still undetermined. 
Alternatively, C, could have been determined from the second-order terms in the 
steady-state mass flux condition 

as x+ 00. However, (5.7) will not yield C, unless the 0 ( F 3 )  term in (5.40) is known. 
For K = 1 (i.e. zero air density) and a = 1 (i.e. the source or sink is at the bottom), 
Y,(x, t )  and Gl(x,  t )  are plotted in figures 6 and 7, respectively. Of course, &(x, t )  and 
G,(x, t) are even and odd functions of x, respectively. 

5.2. Dzference in steady state for source and sink 
As noted above, the literature on the submerged line source or sink in infinitely deep 
water has emphasized that the shape of the free surface, for steady stagnation-point- 
type flows, is insensitive to the sign of F. For the finite-depth case, however, our results 
in $5.3 show that the steady stagnation-point flows are similar, for sources and sinks, 
but not identical. Hocking & Forbes (1992) studied the finite-depth case, but did not 
consider this question since they focused on sink flows. 

We have already seen in (5.3 b)  that Y(x)  is not an even function of F, if only because 
of the setup/setdown term C, F. However, it may be that all odd-order terms in (5.3b) 
are constants, so that Y(x) would be insensitive to the sign of F, to within an additive 
constant setup/setdown. Thus, let us proceed one term further. Integrating (5.1 f )  on 
x gives 

G(x) [a + Y(x)] = F/2 (5.7) 

& = - -(Ul G,+ U, G,)  +$GI G,+ U, U,  + C,, (5.8) 1 [iK 
where U,, U ,  are given in (5.2a, b) and G,, G,  are given in (5.3a). It is easily seen from 
(5.8) that &(x) is not a constant since G(0) = C,, whereas 

as x-t co. Thus, for the finite-depth case the free surface elevation for steady 
stagnation-point flows differs for sources and sinks not only in the presence of a finite 
setup/setdown but also in its shape as well. 

5.3. Numerical results 
In the finite-depth case the wave front propagates more slowly than in the infinite- 
depth case, so that a smaller computational domain is possible. Guided by figures 6 and 
7, we chose the computational domain to be - 80 < x < 80, so that we could carry the 
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FIGURE 8. Y(x, t )  evolution for F = i O . 1 ,  F = f0.3; solid line for source, dashed for sink. 

solution as far as t = 70. However, the advantage of a smaller computational domain 
was offset by a considerable reduction in the speed of convergence of the iterations 
present in the time integrations. This reduction was noted in Baker et al. (1982) as well. 

The cases F = kO.1 were run for K = 1 and a = 1 and results are shown in figures 8 
and 9. F = kO.1 is not so small for the finite-depth case since stagnation-point 
solutions have been reported only for IF1 < F,, z 0.23 for a = 1 (Hocking & Forbes 
1992). Figures 8 and 9 indicate an approach to a steady stagnation-point flow. We 
would like to compare that result with the steady state Y(x)  z FY,(x)+ F2&(x)+ 
F3Y3(x) given by (5.3b) and (5.8), but we do not know C, or C,. To at least be able 
to compare the shape of the three-term steady-state solution Y(x)  (i.e. up to O(F3) 
with that of the computed solution Y(x,  70), we have arbitrarily adjusted - F2C, + F3C, 
so as to fit the two solutions near x = 4, at t = 70, and have displayed the three-term 
steady-state solution as open squares in figure 9. 

The supercritical cases F = k0.3 were also run. The source and sink generate 
somewhat different Y ( x , t )  even at steady state (figures 8 and 9). Figures 8 and 9 
strongly suggest an approach to steady state. 

Finally, we note that the speed of propagation of the leading wave crest of Y(x,  t )  
was calculated to be roughly 1.0, 0.9, 1.1, 0.7 for F=+O. l ,  -0.1, +0.3, -0.3, 
respectively, whereas the speed predicted by the linear shallow-water theory, namely 
all2 (or, in dimensional form, (gD)1/2)  is unity. 
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FIGURE 9. Blow-up of Y(x, t )  for F = f 0.1 and F = f0.3. Open squares denote three-term steady- 
state perturbation solution. 

6. Discussion and conclusions 
The Zaroodny/Greenberg evolution equations were used to obtain both numerical 

solutions and perturbation solutions in the Froude number for the flow induced by a 
line source or sink lying between a free surface and a flat bottom. Whereas numerous 
investigators have studied the steady-state problem, the present paper has emphasized 
the unsteady flow and approach to steady state. 

For the infinite-depth limit, an approach to a steady stagnation-point flow was 
found for subcritical (i.e. for Fsmaller than the critical value 1.42 cited in the literature) 
source flows and sufficiently subcritical sink flows, and for supercritical source flows. 
For the finite-depth case, an approach to a steady stagnation-point solution was found 
for subcritical and supercritical sink flows and for source flows. In addition, a finite free 
surface setup/setdown of f l ( ~ +  1 ) / 8 u ~ ] ~ / ~  + O(F2) was found, due to the finite depth, 
from either the first-order unsteady problem or from the second-order steady-state 
mass flux condition (5.7). Besides this finite setup/setdown, it was shown that the shape 
of the free surface also differs for source and sink flows. 
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